Lightweight detection and classification for wireless sensor networks in realistic environments
- 2 November 2005
- proceedings article
- Published by Association for Computing Machinery (ACM)
- p. 205-217
- https://doi.org/10.1145/1098918.1098941
Abstract
A wide variety of sensors have been incorporated into a spectrum of wireless sensor network (WSN) platforms, providing flexible sensing capability over a large number of low-power and inexpensive nodes. Traditional signal processing algorithms, however, often prove too complex for energy-and-cost-effective WSN nodes. This study explores how to design efficient sensing and classification algorithms that achieve reliable sensing performance on energy-andcost- effective hardware without special powerful nodes in a continuously changing physical environment. We present the detection and classification system in a cutting-edge surveillance sensor network, which classifies vehicles, persons, and persons carrying ferrous objects, and tracks these targets with a maximum error in velocity of 15%. Considering the demanding requirements and strict resource constraints, we design a hierarchical classification architecture that naturally distributes sensing and computation tasks at different levels of the system. Such a distribution allows multiple sensors to collaborate on a sensor node, and the detection and classification results to be continuously refined at different levels of the WSN. This design enables reliable detection and classification without involving high-complexity computation, reduces network traffic, and emphasizes resilience and adaptation to the realistic environment. We evaluate the system with performance data collected from outdoor experiments and field assessments. Based on the experience acquired and lessons learned when developing this system, we abstract common issues and introduce several guidelines which can direct future development of detection and classification solutions based on WSNs. Categories and Subject Descriptors C.2.1 [Computer-Communication Networks]: Network Architecture and Design; C.3 [Computer System Organization]: Special Purpose And Application-Based Systems-Real-Time and embedded systems; C.4 [Performance of Systems]: Design Studies General Terms Design, Experimentation, Measurement, Performance. © 2005 ACMKeywords
This publication has 12 references indexed in Scilit:
- Design and Comparison of Lightweight Group Management Strategies in EnviroSuitePublished by Springer Nature ,2005
- Walking GPS: a practical solution for localization in manually deployed wireless sensor networksPublished by Institute of Electrical and Electronics Engineers (IEEE) ,2004
- Hardware design experiences in ZebraNetPublished by Association for Computing Machinery (ACM) ,2004
- An analysis of a large scale habitat monitoring applicationPublished by Association for Computing Machinery (ACM) ,2004
- The flooding time synchronization protocolPublished by Association for Computing Machinery (ACM) ,2004
- Sensor network-based countersniper systemPublished by Association for Computing Machinery (ACM) ,2004
- Energy-efficient surveillance system using wireless sensor networksPublished by Association for Computing Machinery (ACM) ,2004
- Distributed target classification and tracking in sensor networksProceedings of the IEEE, 2003
- Collaborative signal and information processing: An information-directed approachProceedings of the IEEE, 2003
- Mica: a wireless platform for deeply embedded networksIEEE Micro, 2002