Abstract
This study examined the effects of diets deficient (D) in linoleic [18:2(n-6)] and linolenic acid [18:3(n-3)] at 0.8 and 0.05% energy, respectively, or adequate (C) in 18:2(n-6) and 18:3(n-3) at 8.3 and 0.8% energy, respectively, without (−) or with (+) 0.2% energy arachidonic [20:4(n-6)] and 0.16% energy docosahexaenoic [22:6(n-3)] acid in piglets fed from birth to 18 d. Frontal cortex dopaminergic and serotoninergic neurotransmitters and phospholipid fatty acids were measured. Piglets fed the D− diet had significantly lower frontal cortex dopamine, 3,4-dihydroxyphenylacetic (DOPAC), homovanillic acid (HVA), serotonin and 5-hydroxyindoleacetic acid (5-HIAA) concentrations than did piglets fed the C− diets. Frontal cortex dopamine, norepinephrine, DOPAC, HVA, serotonin and 5-HIAA were higher in piglets fed the D+ compared to those fed the D− diet (P < 0.05) and not different between piglets fed the D+ and those fed the C− diets or the C− and C+ diets. Piglets fed the D− diet had lower frontal cortex phosphatidylcholine (PC) and phosphatidylinositol (PI) 20:4(n-6) and PC and phosphatidylethanolamine (PE) 22:6(n-3) than did piglets fed the C− diet (P < 0.05). Piglets fed the D+ diet had higher frontal cortex PC and PI 20:4(n-6) and PC, PE, PS and PI 22:6(n-3) than did piglets fed the D− diet. These studies show that dietary essential fatty acid deficiency fed for 18 d from birth affects frontal cortex neurotransmitters in rapidly growing piglets and that these changes are specifically due to 20:4(n-6) and/or 22:6(n-3).