Abstract
Chromosome pairing was studied in a number of hybrids involving a 56-chromosome wheat-Agropyron derivative, PW 327. PW 327 originated from the cross, Triticum aestivum cv. Chinese Spring (Chinese Spring × A. elongatum, 2n = 70). In hybrids between PW 327 and T. aestivum a number of multivalent chromosome associations were formed at metaphase I. These multivalents result from interchanges which occurred among wheat chromosomes 1A, 1D, 2A, 2D, 4D and 6D of PW 327. One chromosome of the Agropyron chromosome set of PW 327 occasionally pairs with wheat chromosome 3B. The rest of the Agropyron chromosomes present in PW 327 do not pair with the chromosomes of T. aestivum. It is proposed that the set of Agropyron chromosomes present in PW 327 is not an intact genome of decaploid A. elongatum but rather a modified synthetic genome combining chromosomes and/or chromosome segments from different genomes of the Agropyron parent. The incorporation of duplication-deletions into synthetic genomes of natural polyploids is discussed and it is shown that the set of Agropyron chromosomes which is present in PW 327 carries at least one such duplication-deletion. Pairing between chromosomes of diploid and decaploid A. elongatum was studied in a 56-chromosome hybrid from a cross between an amphiploid, T. aestivum × A. elongatum (2n = 14), and PW 327. It appeared that at least four chromosomes of these two Agropyrons occasionally paired with each other in this hybrid in which the diploidizing system of wheat was active. The relationship between chromosomes of diploid and decaploid A. elongatum is discussed.