The regulation of synthesis of mitochondrial enzymes in regreening and division-synchronized Euglena cultures

Abstract
The effect of light and carbon nutrition on the synthesis of citrate synthase (EC 4.1.3.7) and malate dehydrogenase (EC 1.1.1.37) in dark-grown resting (carbon deficient) and in phototrophic division-synchronized cultures of Euglena gracilis Klebs strain z were investigated. Exposure of dark-grown Euglena to white or red light produced a transient increase in the specific activities of citrate synthase and malate dehydrogenase but blue light (of equal energy) was ineffective. Citrate-synthase activity increased at the end of the light phase and in early dark phase in phototrophic cultures division-synchronized by a regime of 14 h light-10 h dark. The addition of ethanol or malate produced a twofold increase in citrate-synthase activity compared with phototrophic cultures. White and blue light, but not red light, produced a transient repression of the metabolite-induced increase in citrate-synthase activity in division-synchronized cultures. Since only red light could effect a transient increase in the specific activity of mitochondrial enzymes, and the blue-red plastid receptor should respond to both blue and red light, the synthesis of mitochondrial enzymes in regreening cultures may be under the control of a new photoreceptor responding only to red light. In division-synchronized phototrophic cells the primary effector of synthesis of mitochondrial enzymes is not light but carbon nutrition.