Five topographically organized fields in the somatosensory cortex of the flying fox: Microelectrode maps, myeloarchitecture, and cortical modules
- 1 March 1992
- journal article
- research article
- Published by Wiley in Journal of Comparative Neurology
- Vol. 317 (1) , 1-30
- https://doi.org/10.1002/cne.903170102
Abstract
Five somatosensory fields were defined in the grey-headed flying fox by using microelectrode mapping procedures. These fields are: the primary somatosensory area, SI or area 3b; a field caudal to area 3b, area 1/2; the second somatosensory area, SII; the parietal ventral area, PV; and the ventral somatosensory area, VS. A large number of closely spaced electrode penetrations recording multiunit activity revealed that each of these fields had a complete somatotopic representation. Microelectrode maps of somatosensory fields were related to architecture in cortex that had been flattened, cut parallel to the cortical surface, and stained for myelin. Receptive field size and some neural properties of individual fields were directly compared. Area 3b was the largest field identified and its topography was similar to that described in many other mammals. Neurons in 3b were highly responsive to cutaneous stimulation of peripheral body parts and had relatively small receptive fields. The myeloarchitecture revealed patches of dense myelination surrounded by thin zones of lightly myelinated cortex. Microelectrode recordings showed that myelin-dense and sparse zones in 3b were related to neurons that responded consistently or habituated to repetitive stimulation respectively. In cortex caudal to 3b, and protruding into 3b, a complete representation of the body surface adjacent to much of the caudal boundary of 3b was defined. Neurons in this area habituated rapidly to repetitive stimulation. We termed this caudal field area 1/2 because it had properties of both area 1 and area 2 of primates. In cortex caudolateral to 3b and lateral to area 1/2 (cortex traditionally defined as SII) we describe three separate representations of the body surface coextensive with distinct myeloarchitectonic appearances. The second somatosensory area, SII, shared a congruent border with 3b at the representation of the nose. In SII, the overall orientation of the body representation was erect. The lips were represented rostrolaterally, the digits were represented laterally, and the toes were caudolateral to the digits. The trunk was represented caudally and the head was represented medially. A second complete representation, PV, had an inverted body representation with respect to SII and bordered SII at the representation of the distal limbs. The proximal body parts were represented rostrolaterally in PV. Finally, caudal to both SII and PV, an additional representation, VS, shared a congruent border with the distal hindlimb representation of both SII and PV. VS had a crude topography, and receptive fields of neurons in VS were relatively large. Many neurons in VS responded to both somatosensory and auditory stimulation.Keywords
This publication has 89 references indexed in Scilit:
- Convergence of processing channels in the extrastriate cortex of monkeysVisual Neuroscience, 1990
- Demonstration of discrete place‐defined columns—segregates—in the cat SIJournal of Comparative Neurology, 1990
- Somatosensory cortical representation in the Australian ghost bat,Macroderma gigasJournal of Comparative Neurology, 1986
- A variant of the mammalian somatotopic map in a batNature, 1985
- Representations of the body surface in cortical areas 3b and 1 of squirrel monkeys: Comparisons with other primatesJournal of Comparative Neurology, 1982
- Second somatic sensory area in the cerebral cortex of cats: Somatotopic organization and cytoarchitectureJournal of Comparative Neurology, 1982
- Magnification functions and receptive field sequences for submodality-specific bands in SI cortex of catsJournal of Comparative Neurology, 1981
- Sources and terminations of callosal axons related to binaural and frequency maps in primary auditory cortex of the catJournal of Comparative Neurology, 1978
- Some Morphological, Physiological and Behavioral Specializations in North American Beavers (Castor canadensis)Brain, Behavior and Evolution, 1976
- Comparative anatomical studies of the Sml face cortex with special reference to the occurrence of “barrels” in layer IVJournal of Comparative Neurology, 1975