Abstract
Experiments have been carried out in a horizontal superposed fluid and porous layer contained in a test box 24 cm × 12 cm × 4 cm high. The porous layer consisted of 3 mm diameter glass beads, and the fluids used were water, 60% and 90% glycerin-water solutions, and 100% glycerin. The depth ratio ď, which is the ratio of the thickness of the fluid layer to that of the porous layer, varied from 0 to 1.0. Fluids of increasingly higher viscosity were used for cases with larger ď in order to keep the temperature difference across the tank within reasonable limits. The top and bottom walls were kept at different constant temperatures. Onset of convection was detected by a change of slope in the heat flux curve. The size of the convection cells was inferred from temperature measurements made with embedded thermocouples and from temperature distributions at the top of the layer by use of liquid crystal film. The experimental results showed (i) a precipitous decrease in the critical Rayleigh number as the depth of the fluid layer was increased from zero, and (ii) an eightfold decrease in the critical wavelength between ď = 0.1 and 0.2. Both of these results were predicted by the linear stability theory reported earlier (Chen & Chen 1988).

This publication has 4 references indexed in Scilit: