A model of a tropical cyclone is constructed which is based upon conservation of momentum, mass,water vapor and heat in the hydrostatic system. The horizontal and vertical eddy-exchange processes for momentum, moisture and heat are included in the equations in order to incorporate the planetary frictional (Ekman) layer into the model. The effects of the surface boundary (Prandtl) layer are simulated by the boundary conditions for the equations, which permit the evaluation of surface stress, the sensible heat transport and the evaporation of water vapor from the earth surface. The energy sources of the model are the latent heat of condensation released during the ascent of moist air and the sensible heat transported from the ocean surface. The formulation of the finite-difference equations for the axially-symmetric case is presented, together with an examination of the computational stability. By means of a high-speed computer, two independent computations with and without the supply of latent hea... Abstract A model of a tropical cyclone is constructed which is based upon conservation of momentum, mass,water vapor and heat in the hydrostatic system. The horizontal and vertical eddy-exchange processes for momentum, moisture and heat are included in the equations in order to incorporate the planetary frictional (Ekman) layer into the model. The effects of the surface boundary (Prandtl) layer are simulated by the boundary conditions for the equations, which permit the evaluation of surface stress, the sensible heat transport and the evaporation of water vapor from the earth surface. The energy sources of the model are the latent heat of condensation released during the ascent of moist air and the sensible heat transported from the ocean surface. The formulation of the finite-difference equations for the axially-symmetric case is presented, together with an examination of the computational stability. By means of a high-speed computer, two independent computations with and without the supply of latent hea...