The application of proteomics in defining the T cell antigens ofMycobacterium tuberculosis

Abstract
The complete sequencing of the Mycobacterium tuberculosis genome offers a unique opportunity to fully elucidate the biology of this human pathogen. One aspect of significant importance is the definition of T cell antigens. This report describes the development and implementation of a proteomic approach to defining such antigens. Large quantities of subcellular protein fractions of M. tuberculosis were resolved by two‐dimensional liquid phase electrophoresis (2‐D LPE), resulting in 355 and 299 fractions of culture filtrate and cytosolic proteins, respectively. Analysis of these fractions against splenocytes of C57Bl/6 mice infected with M. tuberculosis resulted in the identification of 37 fractions that stimulated a dominant T cell response, as measured by the production of interferon‐γ. Additionally, when the 2‐D LPE fractions were assayed against splenocytes harvested at 10 and 40 days post infection significant changes in the T cell response were observed. Molecular characterization of the proteins contained in each of the 38 immunodominant fractions by liquid chromatography‐mass spectrometry and liquid chromatography‐tandem mass spectrometry resulted in the identification of 30 individual proteins. Many of these represented previously defined antigens. However 17 of these proteins were novel T cell antigens. The data presented demonstrate that proteomics offers a rapid and facile approach for elucidation of immunodominant T cell antigens of pathogenic bacteria.

This publication has 0 references indexed in Scilit: