Hyperphagia and obesity in OLETF rats lacking CCK-1 receptors
- 15 June 2006
- journal article
- review article
- Published by The Royal Society in Philosophical Transactions Of The Royal Society B-Biological Sciences
- Vol. 361 (1471) , 1211-1218
- https://doi.org/10.1098/rstb.2006.1857
Abstract
The brain-gut peptide cholecystokinin (CCK) inhibits food intake following peripheral or site directed central administration. Peripheral exogenous CCK inhibits food intake by reducing the size and duration of a meal. Antagonist studies have demonstrated that the actions of the exogenous peptide mimic those of endogenous CCK. Antagonist administration results in increased meal size and meal duration. The feeding inhibitory actions of CCK are mediated through interactions with CCK-1 receptors. The recent identification of the Otsuka-Long-Evans-Tokushima Fatty (OLETF) rat as a spontaneous CCK-1 receptor knockout model has allowed a more comprehensive evaluation of the feeding actions of CCK. OLETF rats become obese and develop non-insulin dependent diabetes mellitus (NIDDM). Consistent with the absence of CCK-1 receptors, OLETF rats do not respond to exogenous CCK. OLETF rats are hyperphagic and their increased food intake is characterized by a large increase in meal size with a decrease in meal frequency that is not sufficient to compensate for the meal size increase. Deficits in meal size control are evident in OLETF rats as young as 2 days of age. OLETF obesity is secondary to the increased food intake. Pair feeding to amounts consumed by intact control rats normalizes body weight, body fat and elevated insulin and glucose levels. Hypothalamic arcuate nucleus peptide mRNA expression in OLETF rats is appropriate to their obesity and is normalized by pair feeding. In contrast, pair fed and young pre-obese OLETF rats have greatly elevated dorsomedial hypothalamic (DMH) neuropeptide Y (NPY) mRNA expression. Elevated DMH NPY in OLETF rats appears to be a consequence of the absence of CCK-1 receptors. In intact rats NPY and CCK-1 receptors colocalize to neurons within the compact subregion of the DMH and local CCK administration reduces food intake and decreases DMH NPY mRNA expression. We have proposed that the absence of DMH CCK-1 receptors significantly contributes to the OLETF's inability to compensate for their meal size control deficit leading to their overall hyperphagia. Access to a running wheel and the resulting exercise normalizes food intake and body weight in OLETF rats. When given access to running wheels for 6 weeks shortly after weaning, OLETF rats do not gain weight to the same degree as sedentary OLETF rats and do not develop NIDDM. Exercise also prevents elevated levels of DMH NPY mRNA expression, suggesting that exercise exerts an alternative, non-CCK mediated, control on DMH NPY. The OLETF rat is a valuable model for characterizing actions of CCK in energy balance and has provided novel insights into interactions between exercise and food intake.Keywords
This publication has 46 references indexed in Scilit:
- Independent ingestion and microstructure of feeding patterns in infant rats lacking CCK-1 receptorsAmerican Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2006
- Increased oral and decreased intestinal sensitivity to sucrose in obese, prediabetic CCK-A receptor-deficient OLETF ratsAmerican Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2005
- Abdominal vagal mediation of the satiety effects of CCK in ratsAmerican Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2004
- Responsivity to NPY and melanocortins in obese OLETF rats lacking CCK-A receptorsPhysiology & Behavior, 2002
- The cholecystokinin-A receptor mediates inhibition of food intake yet is not essential for the maintenance of body weightJournal of Clinical Investigation, 1999
- An Animal Model of Congenital Defect of Gene Expression of Cholecystokinin (CCK)-A ReceptorBiochemical and Biophysical Research Communications, 1995
- Little or No Expression of the Cholecystokinin-A Receptor Gene in the Pancreas of Diabetic Rats (Otsuka Long-Evans Tokushima Fatty=OLETF Rats)Biochemical and Biophysical Research Communications, 1994
- The CCK‐B/Gastrin ReceptorAnnals of the New York Academy of Sciences, 1994
- Cholecystokinin elicits the complete behavioral sequence of satiety in rats.Journal of Comparative and Physiological Psychology, 1975
- Cholecystokinin decreases food intake in rats.Journal of Comparative and Physiological Psychology, 1973