Surface acoustic wave studies on single-crystal nickel using Brillouin scattering and scanning acoustic microscope

Abstract
The directional dependence (angular dispersion) of surface acoustic phonons propagating on {100}, {110}, and {111} oriented planes of nickel single crystals has been measured by Brillouin scattering and continuous wave scanning acoustic microscope. All the elastic constants C11, C12, C44 are obtained from the angular dispersion of each plane separately. These are compared with the elastic constants determined with conventional ultrasonic measurements on the same specimens. The difference in the sampling depth or the approximate depth of propagation of the acoustic waves into the specimen in each technique is used to characterize the extent of the polish-induced damage zone in the sample.