Performance enhancement of top‐ and bottom‐emitting organic light‐emitting devices using microcavity structures

Abstract
Abstract— In order to improve the efficiency of top‐ and bottom‐emitting devices, metallic electrodes have been used to create microcavity effects within the OLED structure. Semi‐transparent Ag is used as the anode in bottom‐emitting microcavity structures, whereas various reflective opaque metallic anodes are used for the top emitters. The cathode used in both configurations is MgAg — thick and opaque in the case of the bottom emitter and thin and semi‐transparent in the case of the top emitter. Modeling and experiments show that for the top‐emitting structures, the device efficiency is roughly proportional to the reflectivity of the anode in the low reflectivity range and increases significantly more than predicted by reflectivity alone in the high‐reflectivity range. An ultrathin CFx or MoOx hole‐injecting layer allows for the use of many metals as anodes and is an important feature of the device structure. With an Ag anode, both the top‐ and bottom‐emitting microcavity devices are about twice as efficient (on axis) as the analogous nonmicrocavity bottom‐emitting device. Microcavity devices employing a C545T‐doped Alq emitter exhibit efficiencies of 21 cd/A at 6.4 V and 20 mA/cm2, with operational stability equivalent to conventional bottom‐emitting structures.