On step approximations for water-wave problems

Abstract
The scattering of water waves by a varying bottom topography is considered using two-dimensional linear water-wave theory. A new approach is adopted in which the problem is first transformed into a uniform strip resulting in a variable free-surface boundary condition. This is then approximated by a finite number of sections on which the free-surface boundary condition is assumed to be constant. A transition matrix theory is developed which is used to relate the wave amplitudes at ±∞. The method is checked against examples for which the solution is known, or which can be computed by alternative means. Results show that the method provides a simple accurate technique for scattering problems of this type.

This publication has 8 references indexed in Scilit: