Stability of liquid bridges between equal disks in an axial gravity field

Abstract
Equal-diameter solid disks subjected to an axial gravity field of arbitrary intensity is analyzed for all possible liquid volumes. The boundary of the stability region for axisymmetric shapes (considering both axisymmetric and nonaxisymmetric perturbations) have been calculated. It is found that, for sufficiently small Bond numbers, three different unstable modes can appear. If the volume of liquid is decreased from that of an initially stable axisymmetric configuration the bridge either develops an axisymmetric instability (breaking in two drops as already known) or detaches its interface from the disk edges (if the length is smaller than a critical value depending on contact angle), whereas if the volume is increased the unstable mode consists of a nonaxisymmetric deformation. This kind of nonaxisymmetric deformation can also appear by decreasing the volume if the Bond number is large enough. A comparison with other previous partial theoretical analyses is presented, as well as with available experimental results.