Abstract
A new approach based on the three-layer matrix technology to control drug release for oral administration is presented. Polyethylene oxide polymers of various molecular weight together with theophylline as drug model and other excipients have been directly compressed into a three-layer asymmetric floatable system. The core layer contains the active drug while external layers with different thickness, composition, and erosion rates are designed to delay the hydration of the middle layer, restrict the early drug diffusion only through cylindrical side surfaces of the tablet, and provide controlled drug release. Results show that during a 16 h dissolution study drug is completely released following the zero-order kinetics with no burst effect. The release rate remains around 0.1 mg min-1 throughout the dissolution study. The release kinetics is independent of changes in pH and compression force but dependent on layer thickness and formulation components. It appears that the operating release mechanism is based on the existence of a balance between the velocities of advancing glassy/rubbery front and erosion at the swollen polymer/dissolution front.