Photophysics of infrared multiphoton excitation in thiophosgene

Abstract
IR multiphoton absorption (IRMPA) in thiophosgene has been studied by IR-visible double resonance. In particular, the probability of absorption has been measured in both collision-free (molecular beam) and collision-perturbed environments by monitoring the depopulation of the ground state level (000000). Although no evidence for true multiphoton absorption is found, a number of important observations have been made. (1) No correlation exists between the IRMPA spectrum under collision-free conditions and the low energy IR absorption spectrum. (2) Homogeneous depletion of rotational populations occurs at all CO2-laser frequencies. (3) Bottlenecks to absorption do not occur in the pumped-mode ladder. (4) The probability of absorption depends inversely on pressure and is affected dramatically by long-range collisions. These results are interpreted in the framework of an optical Bloch equation model.