Gas-mediated vitreous compression: an experimental alternative to mechanized vitrectomy

Abstract
We have developed a simple technique in rabbit and baboon eyes that utilizes intravitreally injected perfluoropropane gas, which expands slowly to efficiently compress and displace nearly completely the vitreous body. There is cataract formation after extended contact of the gas bubble with the lens. However, it is rapidly reversible by reducing the duration of lens contact (gas-fluid exchange) and by using young animals. No long-term alterations in intraocular pressure or retinal function were observed, as determined by electroretinography, during the 4-month test period. Gross examination and scanning electron microscopy revealed that the vitreous cavity, shortly after full expansion of the gas bubble, was practically free of collagen. The vitreous body had been detached from most of the retina and compressed into a collagenous strand between the optic nerve head and lens in the rabbit eyes, and there was also a dense collagen accummulation on the inferior retinal surface and anterior vitreous base in the rabbits and the baboon. Large areas of the retina and medullary wings were stripped of overlying collagen. By the end of 4 months, the compressed vitreous body had expanded to become an irregular structure that remained separated from the retina in areas of previous detachment. Mechanized vitrectomy is a difficult procedure often needed in experimental work. We believe that the vitreous compression and gas-fluid exchange technique is a valid alterative to a mechanical approach. We also believe that we have a model that simulates the human situation of posterior vitreous detachment and vitreous syneresis.