O-Glycosylation of the Mucin Type

Abstract
While only about ten percent of the databank entries are defined as glycoproteins, it has been estimated recently that more than half of all proteins are glycoproteins. Mucin-type O-glycosylation is a widespread post-translational modification of proteins found in the entire animal kingdom, but also in higher plants. The structural complexity of the chains initiated by O-linked GalNAc exceeds that of N-linked chains by far. The process during which serine and threonine residues of proteins become modified is confined to the cis to trans Golgi compartments. The initiation of this process by peptidyl GalNAc-transferases is ruled by the sequence context of putative O-glycosylation sites, but also by epigenetic regulatory mechanisms, which can be mediated by enzyme competition. The cellular repertoir of glycosyltransferases with their distinct donor sugar and acceptor sugar specificities, their sequential action at highly-ordered surfaces, and their localizations in subcompartments of the Golgi finally determine the cell-specific O-glycosylation profile. Dramatic alterations of the glycosylation machinery are observed in cancer cells, resulting in aberrantly O-glycosylated proteins that expose previously masked peptide motifs and new antigenic targets. The functional aspects of O-linked glycans, which comprise among many others their potential role in sorting and secretion of glycoproteins, their influence on protein conformation, and their multifarious involvement in cell adhesion and immunological processes, appear as complex as their structures.