Model for effective thermal conductivity of a dry snow cover composed of uniform ice spheres

Abstract
The effective thermal conductivity of a snow cover is estimated assuming an idealized collection of uniformly packed ice spheres. An effective thermal conductivity is calculated based on the thermal resistance due to ice-grain contacts or bonds, the pore space/ice acting in series and the unobstructed pore. It is shown to depend very strongly on the snow density and intergranular bonding and, to some extent, on temperature. Conductivity tends to increase as density and the ratio of the contact radius to ice-sphere radius increase. The ice network is generally determined to be the most influential in determining the effective thermal conductitivity. Calculated results fall within the range of empirically determined values.

This publication has 5 references indexed in Scilit: