Multiobjective optimization and multiple constraint handling with evolutionary algorithms. II. Application example
- 1 January 1998
- journal article
- Published by Institute of Electrical and Electronics Engineers (IEEE) in IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans
- Vol. 28 (1) , 38-47
- https://doi.org/10.1109/3468.650320
Abstract
For part I see ibid., 26-37. The evolutionary approach to multiple function optimization formulated in the first part of the paper is applied to the optimization of the low-pressure spool speed governor of a Pegasus gas turbine engine. This study illustrates how a technique such as the multiobjective genetic algorithm can be applied, and exemplifies how design requirements can be refined as the algorithm runs. Several objective functions and associated goals express design concerns in direct form, i.e., as the designer would state them. While such a designer-oriented formulation is very attractive, its practical usefulness depends heavily on the ability to search and optimize cost surfaces in a class much broader than usual, as already provided to a large extent by the genetic algorithm (GA). The two instances of the problem studied demonstrate the need for preference articulation in cases where many and highly competing objectives lead to a nondominated set too large for a finite population to sample effectively. It is shown that only a very small portion of the nondominated set is of practical relevance, which further substantiates the need to supply preference information to the GA. The paper concludes with a discussion of the resultsKeywords
This publication has 3 references indexed in Scilit:
- Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulationIEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 1998
- Multiobjective optimal controller design with genetic algorithmsPublished by Institution of Engineering and Technology (IET) ,1994
- Selection of Controller Parameters using Genetic AlgorithmsPublished by Springer Nature ,1991