Asymptotic expansions for laminar forced-convection heat and mass transfer Part 2. Boundary-layer flows

Abstract
This is the second of two articles by the authors dealing with asymptotic expansions for forced-convection heat or mass transfer to laminar flows. It is shown here how the method of the first paper (Acrivos & Goddard 1965), which was used to derive a higher-order term in the large Péclet number expansion for heat or mass transfer to small Reynolds number flows, can yield equally well higher-order terms in both the large and the small Prandtl number expansions for heat transfer to laminar boundary-layer flows. By means of this method an exact expression for the first-order correction to Lighthill's (1950) asymptotic formula for heat transfer at large Prandtl numbers, as well as an additional higher-order term for the small Prandtl number expansion of Morgan, Pipkin & Warner (1958), are derived. The results thus obtained are applicable to systems with non-isothermal surfaces and arbitrary planar or axisymmetric flow geometries. For the latter geometries a derivation is given of a higher-order term in the Péclet number expansion which arises from the curvature of the thermal layer for small Prandtl numbers. Finally, some applications of the results to ‘similarity’ flows are also presented.

This publication has 1 reference indexed in Scilit: