A model for kinesin movement from nanometer-level movements of kinesin and cytoplasmic dynein and force measurements
- 1 January 1991
- journal article
- Published by The Company of Biologists in Journal of Cell Science
- Vol. 1991 (Supplement) , 135-138
- https://doi.org/10.1242/jcs.1991.supplement_14.27
Abstract
Our detailed measurements of the movements of kinesin- and dynein-coated latex beads have revealed several important features of the motors which underlie basic mechanical aspects of the mechanisms of motor movements. Kinesin-coated beads will move along the paths of individual microtubule protofilaments with high fidelity and will pause at 4nm intervals along the microtubule axis under low ATP conditions. In contrast, cytoplasmic dynein-coated beads move laterally across many protofilaments as they travel along the microtubule, without any regular pauses, suggesting that the movements of kinesin-coated beads are not an artefact of the method. These kinesin bead movements suggest a model for kinesin movement in which the two heads walk along an individual protofilament in a hand-over-hand fashion. A free head would only be able to bind to the next forward tubulin subunit on the protofilament and its binding would pull off the trailing head to start the cycle again. This model is consistent with the observed cooperativity between the heads and with the movement by single dimeric molecules. Several testable predictions of the model are that kinesin should be able to bind to both alpha and beta tubulin and that the length of the neck region of the molecule should control the off-axis motility. In this article, we describe the technology for measuring nanometerlevel movements and the force generated by the kinesin molecule.Keywords
This publication has 20 references indexed in Scilit:
- A three-domain structure of kinesin heavy chain revealed by DNA sequence and microtubule binding analysesCell, 1989
- Submolecular domains of bovine brain kinesin identified by electron microscopy and monoclonal antibody decorationCell, 1989
- The molecular structure of adrenal medulla kinesinCell Motility, 1989
- Tracking kinesin-driven movements with nanometre-scale precisionNature, 1988
- Optical trapping and manipulation of single cells using infrared laser beamsNature, 1987
- Identification of a microtubule-based cytoplasmic motor in the nematode C. elegansCell, 1987
- Video MicroscopyPublished by Springer Nature ,1986
- Identification of kinesin in sea urchin eggs, and evidence for its localization in the mitotic spindleNature, 1985
- Identification of a novel force-generating protein, kinesin, involved in microtubule-based motilityCell, 1985
- Movement of microorganisms in viscous environmentsNature, 1979