Photoaffinity labeling of the rat plasma vitamin D binding protein with [26,27-3H]-25-hydroxyvitamin D3-3.beta.-[N-(4-azido-2-nitrophenyl)glycinate]

Abstract
It is well recognized that the vitamin D binding protein (DBP) is important for the transport of vitamin D, 25-hydroxyvitamin D (25-OH-D), and its metabolites. In an attempt to better understand the molecular-binding properties of this ubiquitous protein, we designed and synthesized a photoaffinity analogue of 25-OH-D3 and its radiolabeled counterpart. This analogue, 25-hydroxyvitamin D3 3.beta.-[N-(4-azido-2-nitrophenyl)glycinate] (25-OH-D3-ANG), was recognized by the rat DBP and was about 10 times less active than 25-OH-D3 in terms of binding. Incubation of [3H]25-OH-D3 or [3H]25-OH-D3-ANG with rat DBP revealed that both compounds were specifically bound to a protein with a sedimentation coefficient of 4.1 S. Each was displaced with a 500-fold excess of 25-OH-D3. When [3H]25-OH-D3-ANG was exposed to UV radiation in the presence of rat DBP followed by the addition of a 500-fold excess of 25-OH-D3, there was no displacement of tritium from the 4.1 S peak. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiographic analysis of [3H]25-OH-D3-ANG exposed to UV radiation in the presence of rat DBP followed by the addition of a 500-fold excess of 25-OH-D3 revealed one major band with a molecular weight of 52,000. These data provide strong evidence that [3H]25-OH-D3-ANG was covalently linked to the rat DBP. This photoaffinity probe should provide a valuable tool for the analysis of the binding site on this transport protein.

This publication has 10 references indexed in Scilit: