Cementum-Forming Cells Are Phenotypically Distinct from Bone-Forming Cells
Open Access
- 1 January 2000
- journal article
- research article
- Published by Oxford University Press (OUP) in Journal of Bone and Mineral Research
- Vol. 15 (1) , 52-59
- https://doi.org/10.1359/jbmr.2000.15.1.52
Abstract
Normal human cementum-derived cells (HCDCs), expanded in vitro, formed mineralized matrix when attached to a ceramic carrier and transplanted subcutaneously into immunodeficient mice. The mineralized matrix elaborated by transplanted HCDC exhibited several features identical to cementum in situ and was significantly different from bone deposited by similarly transplanted human bone marrow stromal cells (BMSCs). No bone marrow formation and very few or no tartrate-resistant acid phosphatase (TRAP)-positive cells (osteoclasts and osteoclastic precursors) were found in HCDC transplants. In contrast, in BMSC transplants both hematopoiesis and TRAP-positive cells were routinely observed. Furthermore, compared with BMSC-derived matrix, HCDC-derived matrix was less cellular, numerous empty lacunae were present, and fewer cells were found on the cementum matrix/ceramic carrier interface. The organization of collagen fibers in HCDC-derived matrix, as visualized by using the Picrosirus red staining method, was similar to cementum, with typical unorganized bundles of collagen fibers. In contrast, bone matrix elaborated by transplanted BMSC had lamellar structure, identical to mature bone in situ. Finally, cementocytes embedded in the cementum-like matrix were immunopositive for fibromodulin and lumican, whereas osteocytes within the bonelike matrix were negative. This pattern is consistent with the cementum and bone in situ, respectively. These results indicate that human cementum cells are phenotypically distinct from bone cells and provide further validation of the combined in vitro/in vivo model of human cementogenesis recently developed in our laboratory.Keywords
This publication has 34 references indexed in Scilit:
- Normal Human Cementum-Derived Cells: Isolation, Clonal Expansion, and In Vitro and In Vivo CharacterizationJournal of Bone and Mineral Research, 1998
- Expression of matrix proteins during the development of mineralized tissuesBone, 1996
- Cementogenesis reviewed: A comparison between human premolars and rodent molarsThe Anatomical Record, 1996
- Origins of cementumOral Diseases, 1996
- Differential Distribution of Lumican and Fibromodulin in Tooth CementumConnective Tissue Research, 1996
- Bone formation by marrow osteogenic cells (MBA-15) is not accompanied by osteoclastogenesis and generation of hematopoietic supportive microenvironmentJournal of Bone and Mineral Research, 1994
- Immunolocalization of osteopontin, osteocalcin, and dentin sialoprotein during dental root formation and early cementogenesis in the ratJournal of Bone and Mineral Research, 1994
- Journal of Bone and Mineral ResearchJournal of Bone and Mineral Research, 1993
- The chemoattractive potency of periodontal ligament, cementum and dentin for human gingival fibroblastsJournal of Periodontal Research, 1989
- Application of the optical Fourier transform for analysis of the spatial distribution of collagen fibers in normal and osteopetrotic bone tissueHistochemistry and Cell Biology, 1982