Self-similar fragmentations derived from the stable tree I: splitting at heights
Preprint
- 10 May 2004
Abstract
The basic object we consider is a certain model of continuum random tree, called the stable tree. We construct a fragmentation process $(F^-(t), t>=0)$ out of this tree by removing the vertices located under height $t$. Thanks to a self-similarity property of the stable tree, we show that the fragmentation process is also self-similar. The semigroup and other features of the fragmentation are given explicitly. Asymptotic results are given, as well as a couple of related results on continuous-state branching processes.
Keywords
All Related Versions
- Version 1, 2004-05-10, ArXiv
- Published version: Probability Theory and Related Fields, 127 (3), 423.
This publication has 0 references indexed in Scilit: