Prediction of partition coefficient based on atom‐type electrotopological state indices

Abstract
The aim of this study was to determine the efficacy of atom-type electrotopological state indices for estimation of the octanol-water partition coefficient (log P) values in a set of 345 drug compounds or related complex chemical structures. Multilinear regression analysis and artificial neural networks were used to construct models based on molecular weights and atom-type electrotopological state indices. Both multilinear regression and artificial neural networks provide reliable log P estimations. For the same set of parameters, application of neural networks provided better prediction ability for training and test sets. The present study indicates that atom-type electrotopological state indices offer valuable parameters for fast evaluation of octanol-water partition coefficients that can be applied to screen large databases of chemical compounds, such as combinatorial libraries.