Abstract
Thirty-seven species of marine microplanktonic algae from 10 taxonomic classes were tested for their viability in axenic culture after prolonged exposure to darkness at 2°, 10°, and 20°C. The darkness test periods were prolonged in weekly installments up to a maximum of 1 year, and viability retention (survival) was judged from the capability for resuming growth after replacement in light. The 2°C-tests showed 32% of the species reaching the limits of survival with 5–6 months of darkness exposure, but another similar percentage continued to tolerate darkness for double this period. These darkness toleration limits were considerably shorter at 20°C for the strains known to be isolated from cold marine regions, whereas the warm-water strains showed the reverse temperature effect in surviving significantly longer at 10°–20°C than at 2°C. Irrespective of temperature or algal class, the bulk of the more resistant survivors was formed by the strains qualifying as benthic types, about 70% of which tolerated 11–12 months and the rest at least 5–6 months of darkness. A few randomly chosen benthic strains extended this toleration to 3 years of darkness. It was concluded that phytoplankters retain darkness-endurance capacity determined by their ecological origin and with no obvious taxonomic correspondence. The concept of ecological races, characterized by temperature control of darkness survival, is discussed.