Effect of noise on geometric logic gates for quantum computation

Abstract
We introduce the nonadiabatic, or Aharonov-Anandan, geometric phase as a tool for quantum computation and show how this phase on one qubit can be monitored by a second qubit without any dynamical contribution. We also discuss how this geometric phase could be implemented with superconducting charge qubits. While the nonadiabatic geometric phase may circumvent many of the drawbacks related to the adiabatic (Berry) version of geometric gates, we show that the effect of fluctuations of the control parameters on nonadiabatic phase gates is more severe than for the standard dynamic gates. Similarly, fluctuations also affect to a greater extent quantum gates that use the Berry phase instead of the dynamic phase.

This publication has 22 references indexed in Scilit: