The application and interpretation of Keeling plots in terrestrial carbon cycle research
Top Cited Papers
- 7 March 2003
- journal article
- Published by American Geophysical Union (AGU) in Global Biogeochemical Cycles
- Vol. 17 (1)
- https://doi.org/10.1029/2001gb001850
Abstract
Photosynthesis and respiration impart distinct isotopic signatures to the atmosphere that are used to constrain global carbon source/sink estimates and partition ecosystem fluxes. Increasingly, the “Keeling plot” method is being used to determine the carbon isotope composition of ecosystem respiration (δ13CR) in order to better understand the processes controlling ecosystem isotope discrimination. In this paper we synthesize emergent patterns in δ13CR by analyzing 146 Keeling plots constructed at 33 sites across North and South America. In order to interpret results from disparate studies, we discuss the assumptions underlying the Keeling plot method and recommend standardized methods for determining δ13CR. These include the use of regression calculations that account for error in the x variable, and constraining estimates of δ13CR to nighttime periods. We then recalculate δ13CR uniformly for all sites. We found a high degree of temporal and spatial variability in C3 ecosystems, with individual observations ranging from −19.0 to −32.6‰. Mean C3 ecosystem discrimination was 18.3‰. Precipitation was a major driver of both temporal and spatial variability of δ13CR, suggesting (1) a large influence of recently fixed carbon on ecosystem respiration and (2) a significant effect of previous climatic effects on δ13CR. These results illustrate the importance of water availability as a key control on atmospheric 13CO2 and highlight the potential of δ13CR as a useful tool for integrating environmental effects on dynamic canopy and ecosystem processes.Keywords
This publication has 78 references indexed in Scilit:
- Carbon isotope discrimination in forest and pasture ecosystems of the Amazon Basin, BrazilGlobal Biogeochemical Cycles, 2002
- 13C content of ecosystem respiration is linked to precipitation and vapor pressure deficitOecologia, 2002
- Natural abundance of 13C in CO2 respired from forest soils reveals speed of link between tree photosynthesis and root respirationOecologia, 2001
- Determinants of isotopic coupling of CO 2 and water vapour within a Quercus petraea forest canopyOecologia, 1999
- Determination of the isotopic(13C/12C) discrimination by terrestrial biology from a global network of observationsGlobal Biogeochemical Cycles, 1998
- Carbon 13 exchanges between the atmosphere and biosphereGlobal Biogeochemical Cycles, 1997
- Carbon isotope composition of boreal plants: functional grouping of life formsOecologia, 1997
- Aircraft measurements of the concentrations of CO2, CH4, N2O, and CO and the carbon and oxygen isotopic ratios of CO2 in the troposphere over RussiaJournal of Geophysical Research: Atmospheres, 1997
- Carbon isotope discrimination during photosynthesis and the isotope ratio of respired CO2in boreal forest ecosystemsGlobal Biogeochemical Cycles, 1996
- Isotopic Composition of Plant Carbon Correlates With Water-Use Efficiency of Wheat GenotypesFunctional Plant Biology, 1984