The stability of elastico-viscous flow between rotating cylinders. Part 2

Abstract
Further consideration is given to the stability of the flow of an idealized elasticoviscous liquid contained in the narrow channel between two rotating coaxial cylinders. The work of Part 1 (Thomas & Walters 1964) is extended to include highly elastic liquids. To facilitate this, use is made of the orthogonal functions used by Reid (1958) in his discussion of the associated Dean-type stability problem. It is shown that the critical Taylor number Tc decreases steadily as the amount of elasticity in the liquid increases, until a transition is reached after which the roots of the determinantal equation which determines the Taylor number T as a function of the wave-number ε become complex. It is concluded that the principle of exchange of stabilities may not hold for highly elastic liquids.

This publication has 3 references indexed in Scilit: