Stress-Intensity Factor for a Short Edge-Notched Specimen Subjected to Three-Point Loading

Abstract
Stress-intensity factors for a short edge-notched specimen with an aspect ratio of appoximately 2.7:1 and subjected to three-point loading were obtained by using Bowie’s numerical technique of expanding a mapping function. Numerical relations between the mapping function, aspect ratios, and crack depths of different specimens as well as numerical difficulty in convergence of the procedure are discussed. The results are compared with the nondimensionalized experimental results obtained by Kies, et al., for a larger aspect ratio of 8:1. The proportionality factor between bending moment and stress-intensity factor was approximately 10 percent lower than the corresponding factor for Kies’ specimen and is in substantial agreement with Gross’ results.