Complete congruence between morphological and rbcL-based molecular phylogenies in birches and related species (Betulaceae).
Open Access
- 1 November 1992
- journal article
- research article
- Published by Oxford University Press (OUP) in Molecular Biology and Evolution
- Vol. 9 (6) , 1076-1088
- https://doi.org/10.1093/oxfordjournals.molbev.a040779
Abstract
Estimations of phylogenies from morphological and molecular data often show contrasting results. We compared morphological and molecular phylogenies in an ancient family of woody dicots, the Betulaceae (birch family). The phylogeny of the family was estimated from parsimony analysis of morphological characters in the genera Alnus, Betula, Carpinus, Corylus, Ostrya, and Ostryopsis and from parsimony and distance-matrix analyses of DNA sequences of the chloroplast gene encoding the large subunit of ribulose-1,5-biphosphate carboxylase (rbcL) in the genera Alnus, Betula, Carpinus, Corylus, and Ostrya and in two outgroups, Quercus and Liquidambar. The topologies obtained by the different methods were completely congruent, and bootstrapping strongly supported the division of the family Betulaceae into two major clades, Betuleae (Alnus and Betula) and Coryleae (other members). Only slightly more homoplasy was present in the rbcL sequence data set than in the morphological set. Relative-rate tests indicated that the Coryleae clade had a faster rate of rbcL evolution than did the Betuleae clade. Heterogeneity of rates of morphological evolution also paralleled those for rbcL.Keywords
This publication has 0 references indexed in Scilit: