Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers

Abstract
We report the cancellation of the soliton self-frequency shift in a silica-core photonic crystal fiber with a negative dispersion slope. Numerical and experimental results show that stabilization of the soliton wavelength is accompanied by exponential amplification of the red-shifted Cherenkov radiation emitted by the soliton. The spectral recoil from the radiation acts on the soliton to compensate for the Raman frequency shift. This phenomenon may find applications in the development of a family of optical parametric amplifiers.