A System Simulation Approach to Ensemble Prediction

Abstract
For many aspects of numerical weather prediction it is important to have good error statistics. Here one can think of applications as diverse as data assimilation, model improvement, and medium-range forecasting. In this paper, a method for producing these statistics from a representative ensemble of forecast states at the appropriate forecast time is proposed and examined. To generate the ensemble, an attempt is made to simulate the process of error growth in a forecast model. For different ensemble members the uncertain elements of the forecasts are perturbed in different ways. First the authors attempt to obtain representative initial perturbations. For each perturbation, an independent 6-h assimilation cycle is performed. For this the available observations are randomly perturbed. The perturbed observations are input to the statistical interpolation assimilation scheme, giving a perturbed analysis. This analysis is integrated for 6 h with a perturbed version of the T63 forecast model, using p... Abstract For many aspects of numerical weather prediction it is important to have good error statistics. Here one can think of applications as diverse as data assimilation, model improvement, and medium-range forecasting. In this paper, a method for producing these statistics from a representative ensemble of forecast states at the appropriate forecast time is proposed and examined. To generate the ensemble, an attempt is made to simulate the process of error growth in a forecast model. For different ensemble members the uncertain elements of the forecasts are perturbed in different ways. First the authors attempt to obtain representative initial perturbations. For each perturbation, an independent 6-h assimilation cycle is performed. For this the available observations are randomly perturbed. The perturbed observations are input to the statistical interpolation assimilation scheme, giving a perturbed analysis. This analysis is integrated for 6 h with a perturbed version of the T63 forecast model, using p...

This publication has 0 references indexed in Scilit: