Futile transmembrane NH 4 + cycling: A cellular hypothesis to explain ammonium toxicity in plants
Top Cited Papers
Open Access
- 13 March 2001
- journal article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 98 (7) , 4255-4258
- https://doi.org/10.1073/pnas.061034698
Abstract
Most higher plants develop severe toxicity symptoms when grown on ammonium (NH \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*} ) as the sole nitrogen source. Recently, NH \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*} toxicity has been implicated as a cause of forest decline and even species extinction. Although mechanisms underlying NH \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*} toxicity have been extensively sought, the primary events conferring it at the cellular level are not understood. Using a high-precision positron tracing technique, we here present a cell-physiological characterization of NH \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*} acquisition in two major cereals, barley ( Hordeum vulgare ), known to be susceptible to toxicity, and rice ( Oryza sativa ), known for its exceptional tolerance to even high levels of NH \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*} . We show that, at high external NH \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*} concentration ([NH \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*} ] o ), barley root cells experience a breakdown in the regulation of NH \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*} influx, leading to the accumulation of excessive amounts of NH \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*} in the cytosol. Measurements of NH \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*} efflux, combined with a thermodynamic analysis of the transmembrane electrochemical potential for NH \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*} , reveal that, at elevated [NH \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*} ] o , barley cells engage a high-capacity NH \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*} -efflux system that supports outward NH \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*} fluxes against a sizable gradient. Ammonium efflux is shown to constitute as much as 80% of primary influx, resulting in a never-before-documented futile cycling of nitrogen across the plasma membrane of root cells. This futile cycling carries a high energetic cost (we record a 40% increase in root respiration) that is independent of N metabolism and is accompanied by a decline in growth. In rice, by contrast, a cellular defense strategy has evolved that is characterized by an energetically neutral, near-Nernstian, equilibration of NH \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*} at high [NH \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*} ] o . Thus our study has characterized the primary events in NH \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*} nutrition at the cellular level that may constitute the fundamental cause of NH \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*} toxicity in plants.Keywords
This publication has 38 references indexed in Scilit:
- pH regulation in acid-stressed leaves of pea plants grown in the presence of nitrate or ammonium salts: studies involving 31P-NMR spectroscopy and chlorophyll fluorescenceBiochimica et Biophysica Acta (BBA) - Bioenergetics, 1997
- Physiological and Biochemical Processes Related to Ammonium Toxicity in Higher PlantsJournal of Plant Nutrition and Soil Science, 1997
- Replacement of nitrate by ammonium as the nitrogen source increases the salt sensitivity of pea plants. II. Inter- and intracellular solute compartmentation in leafletsPlant, Cell & Environment, 1994
- Beyond Global Warming: Ecology and Global ChangeEcology, 1994
- Study of various NH4+/NO3−mixtures for enhancing growth of potatoesJournal of Plant Nutrition, 1993
- Effects of ammonium on elemental nutrition of red spruce and indicator plants grown in acid soilCommunications in Soil Science and Plant Analysis, 1993
- Root Respiration Associated with Ammonium and Nitrate Absorption and Assimilation by BarleyPlant Physiology, 1992
- Studies of the Uptake of Nitrate in BarleyPlant Physiology, 1992
- Ammonium assimilation in different plant species as affected by nitrogen form and pH control in solution cultureNutrient Cycling in Agroecosystems, 1989
- Root Environment Acidity as a Regulatory Factor in Ammonium Assimilation by the Bean PlantPlant Physiology, 1966