Biophysical and Structural Characterization of a Robust Octameric β-Peptide Bundle
- 7 November 2007
- journal article
- research article
- Published by American Chemical Society (ACS) in Journal of the American Chemical Society
- Vol. 129 (47) , 14746-14751
- https://doi.org/10.1021/ja0754002
Abstract
Proteins composed of α-amino acids are essential components of the machinery required for life. Stanley Miller's renowned electric discharge experiment provided evidence that an environment of methane, ammonia, water, and hydrogen was sufficient to produce α-amino acids. This reaction also generated other potential protein building blocks such as the β-amino acid β-glycine (also known as β-alanine); however, the potential of these species to form complex ordered structures that support functional roles has not been widely investigated. In this report we apply a variety of biophysical techniques, including circular dichroism, differential scanning calorimetry, analytical ultracentrifugation, NMR and X-ray crystallography, to characterize the oligomerization of two 12-mer β3-peptides, Acid-1Y and Acid-1Y*. Like the previously reported β3-peptide Zwit-1F, Acid-1Y and Acid-1Y* fold spontaneously into discrete, octameric quaternary structures that we refer to as β-peptide bundles. Surprisingly, the Acid-1Y octamer is more stable than the analogous Zwit-1F octamer, in terms of both its thermodynamics and kinetics of unfolding. The structure of Acid-1Y, reported here to 2.3 Å resolution, provides intriguing hypotheses for the increase in stability. To summarize, in this work we provide additional evidence that nonnatural β-peptide oligomers can assemble into cooperatively folded structures with potential application in enzyme design, and as medical tools and nanomaterials. Furthermore, these studies suggest that nature's selection of α-amino acid precursors was not based solely on their ability to assemble into stable oligomeric structures.Keywords
This publication has 52 references indexed in Scilit:
- From Interstellar Amino Acids to Prebiotic Catalytic Peptides: A ReviewChemistry & Biodiversity, 2007
- Biophysical Characterization of a β-Peptide Bundle: Comparison to Natural ProteinsJournal of the American Chemical Society, 2007
- Helix Bundle Quaternary Structure from α/β-Peptide FoldamersJournal of the American Chemical Society, 2007
- High-Resolution Structure of a β-Peptide BundleJournal of the American Chemical Society, 2007
- Rational Development of β-Peptide Inhibitors of Human Cytomegalovirus EntryJournal of Biological Chemistry, 2006
- A Rapid Library Screen for Tailoring β-Peptide Structure and FunctionJournal of the American Chemical Society, 2005
- Peptide ‘Velcro’: Design of a heterodimeric coiled coilCurrent Biology, 1993
- Heat capacity and conformation of proteins in the denatured stateJournal of Molecular Biology, 1989
- Lanthanide-induced shifts in proton nuclear magnetic resonance spectra. I. Europium-induced shifts to higher fieldsJournal of the American Chemical Society, 1971
- A Vacuum Microsublimation ApparatusScience, 1953