Self-Adjoint Operators in Indefinite Metric Spaces
- 1 July 1971
- journal article
- Published by AIP Publishing in Journal of Mathematical Physics
- Vol. 12 (7) , 1207-1210
- https://doi.org/10.1063/1.1665721
Abstract
Some properties of self-adjoint operators in indefinite metric spaces are explored, with emphasis on the problem of the completeness of the set of eigenvectors. For operators in spaces of finite dimension, some simple criteria are deduced regarding the existence of such a complete set. Implications of completeness of eigenvectors for operators in infinite-dimensional spaces are discussed, and some partial extensions of the results for finite dimensions given.Keywords
This publication has 5 references indexed in Scilit:
- Finite Theory of Quantum ElectrodynamicsPhysical Review D, 1970
- Physical Interpretation of Complex-Energy Negative-Metric TheoriesPhysical Review D, 1970
- Unitarity in the Nθθ sector of soluble model with indefinite metricNuclear Physics B, 1969
- Negative metric and the unitarity of the S-matrixNuclear Physics B, 1969
- Linear vector spaces with indefinite metricIl Nuovo Cimento (1869-1876), 1959