Glucose transport rate and glycogen synthase activity both limit skeletal muscle glycogen accumulation

Abstract
We varied rates of glucose transport and glycogen synthase I (GS-I) activity (%GS-I) in isolated rat epitrochlearis muscle to examine the role of each process in determining the rate of glycogen accumulation. %GS-I was maintained at or above the fasting basal range during 3 h of incubation with 36 mM glucose and 60 μU/ml insulin. Lithium (2 mM LiCl) added to insulin increased glucose transport rate and muscle glycogen content compared with insulin alone. The glycogen synthase kinase-3β inhibitor GF-109203x (GF; 10 μM) maintained %GS-I about twofold higher than insulin with or without lithium but did not increase glycogen accumulation. When %GS-I was lowered below the fasting range by prolonged incubation with 36 mM glucose and 2 mU/ml insulin, raising rates of glucose transport with bpV(phen) or of %GS-I with GF produced additive increases in glycogen concentration. Phosphorylase activity was unaffected by GF or bpV(phen). In muscles of fed animals, %GS-I was ∼30% lower than in those of fasted rats, and insulin-stimulated glycogen accumulation did not occur unless %GS-I was raised with GF. We conclude that the rate of glucose transport is rate limiting for glycogen accumulation unless %GS-I is below the fasting range, in which case both glucose transport rate and GS activity can limit glycogen accumulation.

This publication has 33 references indexed in Scilit: