The Polarizability and Related Properties of Molecular Hydrogen and the Diatomic Hydrogen Ion
- 1 September 1935
- journal article
- research article
- Published by AIP Publishing in The Journal of Chemical Physics
- Vol. 3 (9) , 555-556
- https://doi.org/10.1063/1.1749727
Abstract
The polarizability of molecular hydrogen is calculated from both the Rosen and the Wang eigenfunctions by the variational method. The eigenfunctions of the perturbed molecule contain two parameters which are adjusted to give the molecule a minimum energy. The Rosen eigenfunction leads to a parallel polarizability 7.5×10—25 cm3 and a perpendicular polarizability 7.4×10—25 cm3. The Wang eigenfunction gives similar results. When only one adjustable parameter is used in the variational method, the formula for the polarizability is α=8( q 1 2 ¯ + q 1 q 2 ¯ ) 2 a 0 3 where q 1 and q 2 are the coordinates of electrons 1 and 2 in the direction of the applied electric field and a 0 is the radius of the first Bohr orbit of atomic hydrogen. The magnetic susceptibility and the mean square dimensions of the hydrogen molecule are computed. It is found that the Kirkwood formula is applicable to the diatomic hydrogen ion and polarizabilities are obtained for many internuclear separations using the Guillemin and Zener eigenfunction.Keywords
This publication has 11 references indexed in Scilit:
- Bemerkung über die Polarisierbarkeit des WasserstoffmolekülsThe European Physical Journal A, 1935
- Wellenmechanische Berechnung der Polarisierbarkeit des WasserstoffmolekülsThe European Physical Journal A, 1932
- The Normal State of the Hydrogen MoleculePhysical Review B, 1931
- The calculation of the van der Waal forces for hydrogen and helium at large inter-atomic distancesMathematical Proceedings of the Cambridge Philosophical Society, 1931
- The polarizability of the helium atom and the lithium ionMathematical Proceedings of the Cambridge Philosophical Society, 1930
- The Dielectric Constant of HeliumPhysical Review B, 1930
- ber den Grundterm der Zweielektronenprobleme von H?, He, Li+, Be++ usw.The European Physical Journal A, 1930
- HYDROGEN-ION WAVE FUNCTIONProceedings of the National Academy of Sciences, 1929
- The Problem of the Normal Hydrogen Molecule in the New Quantum MechanicsPhysical Review B, 1928
- VII. Molecular refractivity and atomic interactionJournal of Computers in Education, 1917