Abstract
CAPL-A1 and CAPL-A2, two catalytic subunits of Aplysia cAMP-dependent protein kinase, are encoded by mRNAs generated by alternative splicing of transcripts of a gene that contains two mutually exclusive exon cassettes. The subunits are identical except for amino acids 142-183 of the 352 residues, which differ at 10 of 42 positions. CAPL-A1 and CAPL-A2 have now been expressed in insect cells and purified to homogeneity. The subunits differ in their catalytic properties, which have been determined with a series of synthetic peptide substrates. For example, kcat and Km values for the peptide LRRASLG (kemptide) are 42 s-1 and 36 microM and 28 s-1 and 17 microM for CAPL-A1 and CAPL-A2, respectively. CAPL-A1 and CAPL-A2 have different substrate specificities. For example, (kcat/Km)peptide-T/(kcat/Km)kemptide is 9.1 x 10(-3) for CAPL-A1 and 15 x 10(-3) for CAPL-A2, where peptide-T is the kemptide homologue LRRATLG. The subunits also differ in regulation as determined by their interactions with a purified type I regulatory subunit, which has an IC50 for CAPL-A1 that is 3.5 times higher than the IC50 for CAPL-A2. These modest differences reinforce accumulating evidence that the physiological state of a cell depends upon a spectrum of protein kinases with overlapping substrate specificities and regulatory properties