Tail equivalence and its applications

Abstract
If for two c.d.f.'s F(·) and G(·), 1 – F(x)/1 – G(x) → A, 0 <A <∞ , as x → ∞, then for normalizing constants an > 0, bn, n > 1, Fn (anx + bn ) → φ(x), φ(x) non-degenerate, iff Gn (anx + bn )→ φ A−1(x). Conversely, if Fn (anx+bn )→ φ(x), Gn (anx + bn ) → φ'(x), φ(x) and φ'(x) non-degenerate, then there exist constants C >0 and D such that φ'(x) =φ(Cx + D) and limx→∞ 1 — F(x)/1 — G(x) exists and is expressed in terms of C and D, depending on which type of extreme value distribution φ(x) is. These results are used to study domain of attraction questions for products of distribution functions and to reduce the limit law problem for maxima of a sequence of random variables defined on a Markov chain (M.C.) to the independent, identically distributed (i.i.d.) case.