An application of topological degree to the periodic competing species problem

Abstract
We consider the Volterra-Lotka equations for two competing species in which the right-hand sides are periodic in time. Using topological degree, we show that conditions recently given by K. Gopalsamy, which imply the existence of a periodic solution with positive components, also imply the uniqueness and asymptotic stability of the solution. We also give optimal upper and lower bounds for the components of the solution.

This publication has 9 references indexed in Scilit: