Interactions of microbial biofilms with toxic trace metals: 1. Observation and modeling of cell growth, attachment, and production of extracellular polymer
- 20 June 1994
- journal article
- research article
- Published by Wiley in Biotechnology & Bioengineering
- Vol. 44 (2) , 219-231
- https://doi.org/10.1002/bit.260440211
Abstract
Adsorbent surfaces in natural and engineered systems are frequently modifies by bacterial attachment, growth of a biofilm, and bacterial production of extracellular polymer. Attached cells or sorbed polymers may alter the metal-binding characteristics of the supporting substratum and influence metal partitioning. The interdependent behavior of toxic trace metal partitioning and biofilm development requires description of the interaction between cell growth with its accompanying polymer production and metal speciation. In this article, the first of a two part series, a mechanistic model is developed to describe the growth of a film-forming bacterium which adheres to a substratum through the production of extracellular biopolymers. Each bacterial cell was modeled as a two-component structure consisting of active cell mass and biopolymer. The biopolymer component was further divided into cell-associated and dissolved categories to distinguish which remained naturally bound to cell surfaces from that which did not. Use of this structured model permitted independent description of the dynamics of cell growth, and polymer production, both of which may influence trace metal behavior. Employing parameters obtained from independent experiments as well as published values, the model satisfactorily predicts experimental observations of bacterial growth, attachment and detachment, biopolymer production, and adsorption of polymer onto solid (glass) surfaces. The model stimulated transient and steady-state biofilm systems equally well. In the second article in this series, we describe how this model may be extended and utilized to make predictions of the behavior of transient and steady-state biofilm systems in the presence of a toxic transition metal(Pb). © 1994 John Wiley & Sons, Inc.Keywords
This publication has 28 references indexed in Scilit:
- Production of extracellular and cell-associated biopolymers byPseudomonas atlanticaBiotechnology Letters, 1990
- Adsorption of Pb(II) by a marine bacterium: the effect of cell concentration and pHEstuarine, Coastal and Shelf Science, 1989
- Effect of bacterial exopolymer on lead (II) adsorption by γAl2O3 in seawaterEstuarine, Coastal and Shelf Science, 1989
- Trace metal interactions with microbial biofilms in natural and engineered systemsCritical Reviews in Environmental Control, 1988
- Modeling bisubstrate removal by biofilmsBiotechnology & Bioengineering, 1987
- A model of spatial separation of heterogeneous biomass in fixed‐film reactor for biological treatmentBiotechnology & Bioengineering, 1987
- A multispecies biofilm modelBiotechnology & Bioengineering, 1986
- Isolation and partial chemical analysis of firmly bound exopolysaccharide from adherent cells of a freshwater sediment bacteriumCanadian Journal of Microbiology, 1985
- Biofilm formation and chemostat dynamics: Pure and mixed culture considerationsBiotechnology & Bioengineering, 1984
- AQUIL: A CHEMICALLY DEFINED PHYTOPLANKTON CULTURE MEDIUM FOR TRACE METAL STUDIES12Journal of Phycology, 1979