Thrombin, but not bradykinin, stimulates proliferation in isolated human osteoblasts, via a mechanism not dependent on endogenous prostaglandin formation

Abstract
Osteolysis or osteosclerosis often occurs in bone tissue adjacent to chronic inflammatory processes. Numerous cytokines and inflammatory mediators have been implicated as osteoclast-activating agents, explaining inflammation-induced bone resorption. In many cases, the cause of the sclerosis seen in these lesions is less thoroughly investigated. We have studied the effects of thrombin and bradykinin, 2 inflammatory mediators, on the rate of proliferation in isolated human osteoblasts (hOBs). Thrombin, at and above 1 U/mL, stimulated the rate of thymidine incorporation into hOBs. The absolute cell number also increased, as measured by an assay based on the detection of cell metabolism. A synthetic peptide ligand for the thrombin receptor enhanced the rate of [3H]thymidine incorporation in hOBs, indicating that thrombin-induced proliferation is mediated via the tetheric thrombin receptor. The thrombin-induced proliferation was not affected by indomethacin, excluding prostanoids as mediators of this effect. Bradykinin did not affect either the rate of thymidine incorporation, or number of cells in long-term cultures of hOBs. In conclusion, the inflammatory mediator, thrombin, stimulates proliferation in isolated human osteoblasts probably via the recently described G-pro-tein-coupled tetheric thrombin receptor. Thrombin may therefore be involved as a mediator of inflammation-induced sclerosis and bone formation.

This publication has 19 references indexed in Scilit: