Distinct populations of quiescent and proliferative pancreatic β-cells identified by HOTcre mediated labeling

Abstract
Pancreatic β-cells are critical regulators of glucose homeostasis, and they vary dramatically in their glucose stimulated metabolic response and levels of insulin secretion. It is unclear whether these parameters are influenced by the developmental origin of individual β-cells. Using HOTcre, a Cre-based genetic switch that uses heat-induction to precisely control the temporal expression of transgenes, we labeled two populations of β-cells within the developing zebrafish pancreas. These populations originate in distinct pancreatic buds and exhibit gene expression profiles suggesting distinct functions during development. We find that the dorsal bud derived β-cells are quiescent and exhibit a marked decrease in insulin expression postembryonically. In contrast, ventral bud derived β-cells proliferate actively, and maintain high levels of insulin expression compared with dorsal bud derived β-cells. Therapeutic strategies to regulate β-cell proliferation and function are required to cure pathological states that result from excessive β-cell proliferation (e.g., insulinoma) or insufficient β-cell mass (e.g., diabetes mellitus). Our data reveal the existence of distinct populations of β-cells in vivo and should help develop better strategies to regulate β-cell differentiation and proliferation.