Ultrasonic Force Microscopy
- 1 October 1996
- journal article
- Published by Springer Nature in MRS Bulletin
- Vol. 21 (10) , 36-41
- https://doi.org/10.1557/s0883769400031626
Abstract
As an imaging method of elastic properties and subsurface features on the microscopic scale, the scanning acoustic microscope (SAM) provides spatial resolution comparable or superior to that of optical microscopes. Nondestructive evaluation methods of defects and elastic properties on the microscopic scale were developed by using the SAM, and they have been widely applied to various fields in science and technology. One major problem in acoustic microscopy is resolution. The best resolution of SAM with water as the coupling fluid has been 240 nm at a frequency of 4.4 GHz. At a more conventional frequency of 1 GHz, the resolution is about 1 μm. Therefore the resolution of SAM is not always sufficient for examining nanoscale defects and advanced micro/nanodevices.For materials characterization on the nanometer scale, atomic force microscopy (AFM) was developed and extended in order to observe elastic properties in force-modulation mode. In the force-modulation mode, the sample is vibrated, and the resultant cantilever-deflection vibration is measured and used to produce elasticity images of objects. The lateral force-modulation AFM can evaluate the friction force or the shear elasticity in real time. However in the force-modulation mode, it is difficult to analyze stiff objects such as metals and ceramics.When the sample is vertically vibrated at ultrasonic frequencies much higher than the cantilever resonance frequency, the tip cannot vibrate due to the inertia of the cantilever. However by modulating the amplitude of the ultrasonic vibration, deflection vibration of the cantilever at the modulation frequency is excited due to the rectifier effect of the nonlinear force curves. Based on the tip-sample indentation during ultrasonic vibration, we developed ultrasonic force microscopy (UFM) for contact elasticity and subsurface imaging of rigid objects using a soft cantilever with a stiffness of the order of 0.1 N/m.Keywords
This publication has 13 references indexed in Scilit:
- Ultrasonic Atomic Force Microscope with Overtone Excitation of CantileverJapanese Journal of Applied Physics, 1996
- Lateral Force Modulation Atomic Force Microscope for Selective Imaging of Friction ForcesJapanese Journal of Applied Physics, 1995
- Analysis of Subsurface Imaging and Effect of Contact Elasticity in the Ultrasonic Force MicroscopeJapanese Journal of Applied Physics, 1994
- Ultrasonic force microscopy for nanometer resolution subsurface imagingApplied Physics Letters, 1994
- Atomic force microscopy at MHz frequenciesAnnalen der Physik, 1994
- Nonlinear Detection of Ultrasonic Vibrations in an Atomic Force MicroscopeJapanese Journal of Applied Physics, 1993
- Imaging viscoelasticity by force modulation with the atomic force microscopeBiophysical Journal, 1993
- Detection of surface acoustic waves by scanning force microscopyPhysica Status Solidi (a), 1992
- Adhesion of spheres: The JKR-DMT transition using a dugdale modelJournal of Colloid and Interface Science, 1992
- A Simplex Method for Function MinimizationThe Computer Journal, 1965