Water-Stress-Induced Ethylene Production in Wheat

Abstract
Effects of water stress on ethylene evolution from excised leaf segments and intact plants of wheat (Triticum aestivum L. cv Katepwa) were studied. Excised leaf segments of 8 day or 6 week old plants were dried until they lost 8% of their fresh weight (water potential about -2.3 megapascals). These and nondried control leaf segments (water potential about -1.0 megapascal) were sealed in glass tubes, and their ethylene production rates were compared by head space analysis via gas-chromatography. The dried leaves of both ages produced significantly more ethylene than the corresponding controls. However, when 6 week old intact plants were water-stressed by withholding water supply, and their ethylene production measured using a continuousflow system, no increase in ethylene was deteceted despite a drop in water potential to -2.9 megapascals over 6 days. Even the leaf segments excised from plants that had been subjected to water stress for 2, 4, or 6 days produced no more ethylene (in sealed tubes) than the leaves from well-watered plants. In fact, the ethylene production by these segments decreased with the increase in the severity of stress experienced by the plants. The results show that the commonly reported overproduction of ethylene by excised leaves subjected to rapid drying represents an artifact, which has little relevance to the water stress responses of intact wheat plants.
Keywords