Inhibition of naphthalene cataract in rats by aldose reductase inhibitors
- 1 January 1996
- journal article
- research article
- Published by Taylor & Francis in Current Eye Research
- Vol. 15 (4) , 423-432
- https://doi.org/10.3109/02713689608995833
Abstract
Naphthalene-induced cataract in rat lenses can be completely prevented by AL01576, an aldose reductase inhibitor (ARI). In an attempt to understand the mechanism of this inhibition, several ARIs were examined to compare their efficacies in preventing naphthalene cataract, using both in vitro and in vivo models. Two classes of ARIs were tested: One group including AL01576, AL04114 (a AL01576 analog) and Sorbinil contained the spirohydantoin group, while Tolrestat contained a carboxylic acid group. Furthermore, to clarify if aldose reductase played a role in naphthalene-induced cataractogenesis in addition to its role in sugar cataract formation, a new dual cataract model was established for ARI evaluations. This was achieved by feeding rats simultaneously with high galactose and naphthalene or incubating rat lenses in culture media containing high galactose and naphthalene dihydrodiol. Under these conditions, both cortical cataract and perinuclear cataract developed in the same lens. It was found that at the same dosage of 10 mg/kg/day, both AL01576 and AL04114 completely prevented all morphological and biochemical changes in the lenses of naphthalene-fed rats. Sorbinil was less efficacious, while Tolrestat was inactive. AL01576 showed a dose-response effect in preventing naphthalene cataract and at 10 mg/kg/day, it was also effective as an intervention agent after cataractogenesis had begun. With the dual cataract model, Tolrestat prevented the high galactose-induced cortical cataract but showed no protection against the naphthalene-induced perinuclear cataract. AL01576, on the other hand, prevented both cataract formations. Results for dulcitol and glutathione levels were in good agreement with the morphological findings. AL04114, and ARI as potent as AL01576 but without its property for cytochrome P-450 inhibition, displayed similar efficacy in preventing naphthalene cataract. Based on these results, it was concluded that the prevention of the naphthalene cataract probably results from inhibition of the conversion of naphthalene dihydrodiol to 1,2-dihydroxynaphthalene and that the effect of the ARIs cannot be explained by their inhibition of the dihydrodiol dehydrogenase activity of aldose reductase.Keywords
This publication has 16 references indexed in Scilit:
- Establishment of a naphthalene cataract model in vitroExperimental Eye Research, 1992
- The possible mechanism of naphthalene cataract in rat and its prevention by an aldose reductase inhibitor (ALØ1576)Experimental Eye Research, 1992
- Glutathione synthesis and glutathione redox pathways in naphthalene cataract of the ratCurrent Eye Research, 1990
- Studies on the mercapturic acid pathway in the rabbit lensExperimental Eye Research, 1988
- Glutathione depletion in the lens of galactosemic and diabetic ratsExperimental Eye Research, 1988
- The effects of a new aldose reductase inhibitor (tolrestat) in galactosemic and diabetic ratsMetabolism, 1985
- Naphthalene cataract in rats and rabbits: A resuméExperimental Eye Research, 1979
- Pathology in the eye of the naphthalene-fed rabbitExperimental Eye Research, 1968
- The metabolism of naphthalene and its toxic effect on the eyeBiochemical Journal, 1967
- THE NATURE OF THE OCULAR LESIONS PRODUCED EXPERIMENTALLY BY NAPHTHALENEBritish Journal of Ophthalmology, 1930