Exponential stabilization of driftless nonlinear control systems using homogeneous feedback

Abstract
This paper focuses on the problem of exponential stabilization of controllable, driftless systems using time-varying, homogeneous feedback. The analysis is performed with respect to a homogeneous norm in a nonstandard dilation that is compatible with the algebraic structure of the control Lie algebra. It can be shown that any continuous, time-varying controller that achieves exponential stability relative to the Euclidean norm is necessarily non-Lipschitz. Despite these restrictions, we provide a set of constructive, sufficient conditions for extending smooth, asymptotic stabilizers to homogeneous, exponential stabilizers. The modified feedbacks are everywhere continuous, smooth away from the origin, and can be extended to a large class of systems with torque inputs. The feedback laws are applied to an experimental mobile robot and show significant improvement in convergence rate over smooth stabilizers.

This publication has 30 references indexed in Scilit: