Cyclic hypoxic pulmonary vasoconstriction induced by concomitant carbon dioxide changes

Abstract
We examined the stability of acute lobar hypoxic pulmonary vasoconstriction. In 12 mongrel dogs the left lower lobe (LLL) was selectively ventilated with a constant minute molume with nitrogen and the electromagnetically measured fraction of the cardiac output perfusing the LLL and the LLL end-tidal CO2 concentration were observed for 1 h. We found that both the fraction of the cardiac output perfusing the LLL and the LLL end-tidal CO2 concentration initially decreased during LLL hypoxia and then oxcillated in a progressively damped fashion. When LLL end-tidal CO2 was kept constant by CO2 infusion during LLL hypoxia or when LLL hypoxia was induced by LLL atelectasis, no oscillations were observed. We conclude that if minute ventilation of a hypoxic area of lung is kept constant, then decreased regional blood flow decreases regional alveolar PCO2. As a consequence of these two opposinginfluences, blood flow to an acutely hypoxic area will be oscillatory.

This publication has 0 references indexed in Scilit: