High-power CW quantum cascade lasers: How short can we go?

Abstract
Limiting factors for short-wavelength CW QCL designs are discussed. A model is used to predict the short-wavelength cutoff for strain-balanced QCL structures. High performance is predicted at wavelengths as short as 3.0 micron based on a conduction band offset of 0.9 eV in the GaInAs/AlInAs materials. Recent work is presented on the growth of strained materials using gas-source molecular beam epitaxy to investigate the model predictions. Advanced material characterization, including high-resolution x-ray diffraction, photoluminescence, atomic force microscopy, and wafer-scale uniformity and repeatability are demonstrated for highly-strained and strain-balanced QCL structures. Laser testing results are presented for QCLs operating near the short wavelength limit at 3.66 micron. Lastly, predictions for further performance improvement at short wavelengths are discussed.

This publication has 0 references indexed in Scilit: